The Future of Armour? New Chainmail-Like Material Shows Promise
A team of researchers from Northwestern University has developed the first 2D mechanically interlocked polymer material, resembling chainmail, that combines strength and flexibility. This material, which can withstand significant force and pressure, holds promise for applications in lightweight body armour. By using a new polymerisation process, the team achieved the highest density of mechanical bonds ever recorded. Researchers are exploring further uses in high-performance materials
A new two-dimensional (2D) material that combines exceptional strength with flexibility has been created by a team led by Northwestern University. Described as resembling interlinked chainmail, this innovative material is lightweight and holds potential for applications such as advanced body armour and other high-performance uses. The breakthrough is credited to the development of a scalable polymerisation process that creates densely packed mechanical bonds, reportedly achieving a record-breaking 100 trillion mechanical bonds per square centimetre.
Structure and Development Process
According to the research published in Science, this material is the first of its kind—a 2D mechanically interlocked polymer. The team utilised X-shaped monomers, arranging them in a crystalline structure to facilitate the formation of mechanical bonds. William Dichtel, Robert L. Letsinger Professor of Chemistry at Northwestern University, noted in a statement, as reported by phys.org, that this novel polymer structure offers unique resistance to tearing.
He explained that the material can dissipate applied forces in various directions due to the freedom of movement within its mechanical bonds. Madison Bardot, a doctoral candidate and the study's first author, reportedly devised the concept for the material's formation. Describing the process as “high-risk, high-reward,” Dichtel attributed the success to rethinking traditional approaches to molecular crystal reactions. Layers of the resulting interlocked polymer sheets are said to provide both rigidity and flexibility, while their structure has been confirmed using advanced electron microscopy techniques by researchers at Cornell University.
Enhanced Properties and Applications
The material's inherent strength inspired researchers at Duke University, led by Matthew Becker, to incorporate it into Ultem, a robust polymer used in extreme conditions. A composite containing just 2.5 percent of the new material reportedly increased Ultem's toughness significantly. Dichtel suggested that the polymer could serve as a specialised material for ballistic fabrics and lightweight, protective gear.
The study was dedicated to the late Sir Fraser Stoddart, who pioneered the concept of mechanical bonds and was awarded the Nobel Prize in Chemistry in 2016 for his contributions to molecular machines.