Scientists Uncover New Form of Magnetism That Could Be the Key to Superconductivity

Researchers have discovered altermagnetism, a third form of magnetism that combines the best properties of ferromagnets and antiferromagnets. This new material, identified in manganese telluride, breaks time reversal symmetry and could play a crucial role in developing more efficient superconducting materials. Altermagnetism has the potential to enhance memory devices with greater speed and resilience, while bridging gaps in the symmetries between superconductivity and magnetism. This breakthrough could lead to practical advancements in both information storage and quantum technologies.

Jan 26, 2025 - 18:12
 0  4
Scientists Uncover New Form of Magnetism That Could Be the Key to Superconductivity

A new category of magnetism, identified as "altermagnetism," has been discovered, potentially unlocking new advancements in superconducting materials and magnetic memory devices. This development, made by researchers using advanced imaging techniques, highlights how altermagnetism bridges the gap between two previously established types of magnetism. This breakthrough could lead to faster and more secure data storage systems, while also addressing long-standing challenges in superconductivity research.

Details from the Study

According to a study published in Nature, the research was led by Professor Peter Wadley at the University of Nottingham. The findings suggest that altermagnetic materials, unlike ferromagnetic or antiferromagnetic ones, feature magnetic moments that point alternately in opposite directions, but with a slight twist. This structure provides a combination of the strengths of both previously known magnetism types, enabling greater resilience, security, and functionality in memory storage.

Dr Oliver Amin, a postdoctoral researcher involved in the study, explained to Live Science that this form of magnetism incorporates the secure properties of antiferromagnets while retaining the ease of data manipulation found in ferromagnets. In contrast to ferromagnets, which are susceptible to interference, and antiferromagnets, which are difficult to manipulate, altermagnets demonstrate unique qualities that address both challenges.

Significance of Time Reversal Symmetry Breaking

As per the research team, altermagnetic materials possess a rare property called time reversal symmetry breaking. This allows certain electrical behaviours to exist that were previously unattainable. It also enables precise control of internal magnetic structures. Using photoemission electron microscopy, the team successfully mapped magnetic domains and manipulated the materials through thermal cycling techniques.

Future Applications

These findings could lead to the development of advanced magnetic memory systems and spintronic devices, offering increased speed and resilience. Additionally, the study suggests that altermagnetism might serve as the missing link in superconductivity research, filling a gap in symmetry-related challenges. This discovery could open the door to revolutionary applications in electronics and materials science.

 

appuraja9 Appu Raja is a multifaceted professional, blending the roles of science educator, motivator, influencer, and guide with expertise as a software and application developer. With a solid foundation in science education, Appu Raja also has extensive knowledge in a wide range of programming languages and technologies, including PHP, Java, Kotlin, CSS, HTML5, C, C++, Python, COBOL, JavaScript, Swift, SQL, Pascal, and Ruby. Passionate about sharing knowledge and guiding others, Appu Raja is dedicated to inspiring and empowering learners in both science and technology.